2024.06.07

データマネジメントとは?DX・データ活用に必要不可欠な理由と実践事例

データマネジメントとは?DX・データ活用に必要不可欠な理由と実践事例

現在、デジタルの発展により多種多様なデータが大量に取得できるようになりました。多くの企業がデータを保有し、活用しているかと思います。今後もデータが増えていくことが予想されている中で、有効的にデータを利用していくためには、データマネジメントを行うことが重要です。

なお、弊社EVERRISEでは、7月25日(木)に「1st Party Data活用で実現する顧客コミュニケーション改善」と題し、webセミナーを実施します。1st Party Dataを活用されている企業が増えている中で、効果的に活用するために必要なデータ基盤の構築から、1st Party Data活用の進め方やポイント、施策について、事例を交えてお伝えします。以下のボタンからお申込み可能ですので、ぜひご参加ください。

seminar-20240725

データマネジメントの概要についてすでに理解されている方は、こちらをクリックしてください。データマネジメントを成功させるポイントの紹介部分までスキップできます。

データマネジメントとは

データマネジメントとは、文字通り「データを管理すること」です。

DAMA International(国際データマネジメント協会)が発行している「データマネジメント知識体系ガイド 第二版」によると、データマネジメントは次のように定義されます。

データとインフォメーションという資産の価値を提供し、管理し、守り、高めるために、それらのライフサイクルを通して計画、方針、スケジュール、手順などを開発、実施、監督することである。

つまり、管理と言ってもその幅は広く、データを登録・更新・活用することからそれらの業務を遂行するために必要な活動のすべてを含んだものを、データマネジメントと呼びます。

データマネジメントという言葉自体は2009年頃から使われていましたが、現在ではデータを管理するという意味からデータを活用するという意味で使われているケースが増えています。

また、データマネジメントでは、データをビジネスに活かすことができる状態が継続的に維持されること、さらに進化させていくための組織的な営み、意思決定のために常時利用可能な状態に改善や維持することの3つが求められます。

データマネジメントの対象

ここからは、マネジメント対象であるデータについて説明します。

構造化データと非構造化データ

structureddate unstructureddata

システムで取り扱うデータは、大きく構造化データと非構造化データの2つに分けることができます。

構造化データとは、一定の体系に則って整形されたデータのことです。非構造化データとは、CADデータ、画像、動画、SNSやメールの本文などの文章や画像・音声などのデータの規則性がなく表形式に変換できないデータのことです。

例えば、「Aさんはスカートを購入した」という文章のデータがあった場合、人間は意味を読み取ることができますが、システム側ではこちらは単なる文字列として認識し、非構造データとして分類されます。これに対して「主語:Aさん」「述語:購入した」「目的語:スカート」のように、体系化によってそれぞれの言葉に意味を持たせた記述を行うと、構造化データとして分類されます。

非構造化データを分析などに活用したい場合は、それぞれに意味や情報を加えて構造データに変換する必要があります。

データマネジメントを構成する11の領域

データマネジメントを行ううえで、手引書となるデータマネジメントに関する知識を体系立ててまとめた書籍にDMBOK(ディンボック:data management body of knowledge)というものがあります。現在までに第2版が出版されています。

DMBOKでは、データマネジメントの領域に関する知識を11個の機能に集約、体系化しています。

知識領域 詳細
データガバナンス データに関する意思決定の方法と、人と業務プロセスがどのようにデータと関わるべきかに焦点をあてたデータ統制(コントロール)のための活動のこと。
データアーキテクチャー 現状を説明し、データ要件を定義、データ統合に道筋をつけ、データ戦略上重要なデータ資産を統制するための戦略策定・計画を立てること。
データモデリングとデザイン データ要件を洗い出して分析し、取り扱いのスコープを決めるためのプロセスのこと。
データストレージとオペレーション データの生成・取得から廃棄までのサイクル全体の価値を高めるため、格納されているデータを設計・実装してサポートすること。
データセキュリティ プライバシーと秘密保護規制、契約上の合意、ビジネスの要件に合わせて情報を保護するために、セキュリティーポリシーの立案や開発・実行、また情報に対して適切な認証と権限付与を行いアクセス制御や監視を行うこと。
データ統合と相互運用性 データストアやアプリケーションまた組織などの間で行われるデータの移動と統合に関するプロセスのこと。データ統合は、データの仮想的・物理的に問わず一貫した形式に統一すること。データの相互運用性は、さまざまなシステムがどの程度情報を連携できるかを表すこと。
ドキュメントとコンテンツ管理 ドキュメントと非構造化・半構造化データの取得・保存・アクセス・利用の制限を行うこと。
参照データとマスターデータ 組織の業務プロセス全体にわたり、完全で一貫性があり最新で信頼できる参照データとマスターデータが全社の業務機能とアプリケーション間で共有できるようにするために管理およびメンテナンスを行うこと。
データウェアハウジングとBI 効果的な業務分析と意思決定を可能にするためにビジネスインテリジェンスアクティビティを支援すること。
メタデータ 人々が一貫性を持ってデータコンテンツを理解し、データを利用できるようにメタデータの品質・一貫性・最新性・セキュリティを確保できるよう管理を行うこと。
データ品質の管理 信頼の高いデータを常に利用できるようにデータの品質レベルの評価・監視やデータ利用者の要件に沿ったデータを作成できる統合されたアプローチ方法などを策定すること。

この中で重要になってくるのがデータガバナンスとデータ品質です。

データガバナンスは、データの統治のことであり、データに関するルールと倫理が守られているか、またルールや倫理が守られる組織体制になっているかが問われています。データは、使い方を間違えれば悪用や会社が正しく機能しなくなる恐れがあります。そのような最悪のケースを避けるためにも、データガバナンスが重要になります。

データ品質は、データに信頼がおけるかどうかの問題に対する対策であり、データの価値に本質的に関わる重要なものです。信頼できないデータに基づいて企業が経営するのは不可能でしょう。

関連:データクレンジングと名寄せとは?顧客データを正確に管理する方法

データマネジメントを行う際は、データ品質の管理・データガバナンスの推進を根幹においたうえで、データの保持をするための手段、データの分類・整理に関するテクニック・知識など他の領域に枝分かれする体系を取るのが近道かもしれません。

データマネジメントが注目されている背景

データマネジメントが注目されている背景には、以下の4つの要因が挙げられます。

  • 分散環境による多種多様なデータの大量発生
  • 非構造化データの増加
  • データ保護の強化
  • データドリブン経営を図る企業の増加

分散環境による多種多様なデータの大量発生

十数年前までは基幹システムだけでデータが一括で管理されていましたが、デジタルの発展が進んだ現在では、常にデータがあらゆるところで生まれ、組織内のさまざまな場所で蓄積されている状態が当たり前になっています。

マーケティングにおける顧客データだけをとって見ても、ECサイトやアプリ・モール型オンラインショップなどで会員情報や行動情報を取得でき、広告からの行動履歴やLINEなどのメッセージツールへの反応、実店舗での情報などデータの発生場所や種類・構造がチャネルごとに異なります。

また、行動情報などのトランザクションデータは日々、何十万・何百万件と発生しており、種類だけではなくデータ自体の量も膨大に発生しています。

これらのデータが分散されて管理されている状態を、データのサイロ化と呼び、データ管理に多くの工数がかかる、データの正確性が担保できないなどの問題を引き起こします。そのため、データマネジメントでデータを一元管理する必要があります。

data silos

そのため、データのサイロ化を解消するためにも、データマネジメントでデータを一元管理する必要があります。

データのサイロ化について、詳しくは下記の記事をご覧ください。

関連:「データのサイロ化」5つの問題と解決策。攻めのDX推進を妨げるサイロ化の原因とは

非構造化データの増加

大量のデータを取得できるようになった現代において、圧倒的にボリュームと種類が多いのが非構造化データです。

非構造化データには、日々の業務に関連するものが多く、またログデータ・映像データなど昨今のトレンドに沿った情報も含む場合が多いです。そのため企業のデジタル戦略には、非構造化データ活用も欠かせません。

しかし、「構造化データと非構造化データ」の章で説明した通り非構造化データは構造定義を持たないデータです。そのままの状態では、高度な機械学習やBIツールを用いたとしても、分析などに利用することはできません。非構造化データを分析・活用するためには、利用できるようにするための変換や加工が必要になります。

そのため、データマネジメントで、加工前のデータや加工後のデータ、データ同士の関係性などを適切に管理し、貴重なデータを活用できる環境を作る必要があります。

データ保護の強化

2018年1月に施行されたCCPA(カリフォルニア州消費者プライバシー法)や、2018年5月に施行されたGDPR(一般データ保護規則)、また日本でも2022年4月に日本で改正個人情報保護法が施行されています。

個人情報保護を重視しているAppleでは、モバイルアプリでのトラッキングにおける同意に関するルールが厳格に定められ、審査において規定を満たしていないアプリを公開できないようにしています。

ブラウザー側でも、Safariが3rd Party Cookieの取得に制限をかけるなど、個人情報に関する規制が世界中で進んでいます。

データを取得しやすく、かつ活用の幅も広くなったため、データマネジメントにより企業が保有しているデータがどのように管理・活用されているのか明確化する必要があります。プライバシー問題について、詳しくは下記の記事をご覧ください。

関連:顧客データ活用とプライバシー問題の両立。顧客に信頼されるデータの扱い方

データドリブン経営を図る企業の増加

データドリブンとは、日本の製造業ではKKDと呼ばれることもある「勘、経験、度胸」に頼らず、さまざまなデータを蓄積し、その分析結果をもとに課題解決のための施策を立案やビジネスの意思決定などを行うことを指します。

情報化社会の発展によりやり取りされる情報量の増加や消費社会における価値観の多様化、顧客行動の複雑化などを受け、データそのものの価値は年々高まっており、あらためてデータドリブン経営の重要性を見つめ、取り入れていく企業が増えています。

データを活用した経営を図るためには、まずデータマネジメントによりデータの整理や活用ができる環境・ルールを定める必要があります。

下記の無料資料で、企業として理想的なデータの持ち方や適切なデータの使い方、データ活用の事例について紹介していますので、ぜひご覧ください。

無料資料:企業を強くするデータの持ち方・使い方のダウンロードはこちら

企業を強くするデータの持ち方・使い方

データマネジメントがもたらすメリット

データマネジメントがもたらす主なメリットとして、以下の4つを紹介します。

  • 業務効率の改善が見込める
  • ビジネスのリスクを減らせる
  • 信頼のおけるデータの活用ができる
  • 顧客に新しい価値を提供できる

業務効率の改善が見込める

データマネジメントにより社内のデータが整理され正しい状態で管理されていれば、業務のうえで欲しい情報を決まった場所に行くだけで取得することができます。これによりデータを探すという手間とその際に生じる不要なコミュニケーションを省くことができ、業務効率の改善が見込めます。

ビジネスのリスクを減らせる

自社のデータがどのような形で取得され、管理されているのかが整理されていれば、日本だけではなく各国のプライバシー保護の観点に低触したり、データの流出などのセキュリティーリスクに晒される危険性から企業を守ることができます。

万が一、データ規制に抵触していたり流出の恐れがあった場合にも、整理されている状態であれば、原因の追及やリカバリーも迅速に対応することができます。

また、業務や部署によっては、属人化が進み、データや情報が個人に閉ざされてしまっている場合があるかもしれません。こうした業務の属人化は、担当者の不在時に業務へ大きな影響を与える可能性が大きいです。

データマネジメントにおいて業務に関する情報を整理・管理し、いつでも共有できる仕組みの構築を行うことで、リスク分散に繋げることができます。

信頼のおけるデータの活用ができる

データは、管理されているだけでは意味がありません。各業務において分析や施策の実行などに活用されるかと思います。特にデータの分析は、課題の抽出や目的達成のための仮説の検証のために非常に重要です。

正しくデータ分析を行うためには、具体的な課題を見つけ、現時点での仮説とその根拠は何か、仮説を確かめるにはどんな情報を集めてデータ分析する必要があるのかを検討することが大切です。その際に、前提としてデータが正しく、また信頼のおけるものである必要があります。

データの信頼性を測定するための指標をデータの品質と呼びます。このデータの品質が一定以上担保されていない状態で分析を行ったとしても、出た結果は過っている可能性が高く、その数字をもとに仮説の検証や課題の抽出を行うことは危険です。

データマネジメントにてデータの品質を高めることで、信頼のおけるデータで分析や活用を行うことができます。

顧客に新しい価値を提供できる

現代は、ハイブランドや強いこだわりのある商品を除けば、消費者がある程度の品質の商品を気軽に買える時代となっています。そんな現代において、競合と差をつけるためには、深い顧客理解が重要です。深い顧客理解を得るためには、顧客データを分析・可視化することが重要です。

データマネジメントにより整理されたデータを活用することで、顧客の動向や趣向が見え、深い顧客理解に繋げることができます。顧客が欲しい情報を欲しいタイミングで提供し、コミュニケーションの改善に繋げたり顧客が本当に望んでいるサービスや商品を見極めるためのヒントを得たりすることができます。さらに、顧客自身も気づいていない無意識に存在する理由や本音を洞察する、つまり顧客インサイトを得て商品の開発やマーケティング活動に生かすことも可能になるでしょう。

データを活用し顧客目線でコミュニケーションを構築する手順については、下記の無料資料で紹介しています。

無料資料:データによる顧客中心のコミュニケーション再構築|これからの市場で選ばれる企業になるために

データによる顧客中心のコミュニケーション再構築|これからの市場で選ばれる企業になるために

データマネジメントの進め方

データマネジメントは、主に4つのステップで進めていきます。

  1. 戦略策定・計画(データアーキテクチャー)
  2. データの設計
  3. データを蓄積する仕組みの構築・維持
  4. データの利用(データ品質の向上、セキュリティ管理も含む)

まずは、事業戦略や業務要件、既存データソースの管理基盤、データの変更頻度などを考慮して、マスターデータの統合方式を検討し、戦略策定・計画を立てることが重要です。現状のデータの管理状況や状態を把握することで、理想の姿とのギャップが明確になり戦略策定・設計が立てやすくなります。

データマネジメント活動を正しく進めるためには、ルールの制定や取り締まりの基準などを定めることも必要です。設計や仕組みを作る中で、並行してルールなどの設定も行いましょう。

データマネジメントを成功させるポイント

ここからは、データマネジメントを成功させるポイントについて紹介します。

  • 目的を明確にする
  • 現状のデータを調査する
  • スモールスタートから始める
  • PDCAサイクルが回せる環境を作る

目的を明確にする

データマネジメントを行ううえでは、やみくもに整理を行うのではなく、実現したい理想の姿を定めてから取り組むようにしましょう。

組織によってデータマネジメントによって実現したいことは多種多様です。そのため、自分たちの組織ではデータをどのように活用したいかを考えることが大切です。理想の姿が明確になっていないまま進んでしまうと、ツールを選定する時に基準が分からず時間がかかったり、導入した仕組みが思ったものと異なるというケースを引き起こす恐れがあります。

また、データとシステムは切っても切り離せない関係性ですが、システムを入れること自体は目的ではありません。データマネジメントによってデータを管理することを目的化せず、理想の活用方法に向けて整備を行うことが重要です。

現状のデータを調査する

自分の組織が、どのようなデータを取集し、どこに蓄積し、どのように活用しているかを把握する必要があります。

現状を把握したうえで、目的に対して現状何ができているか・できていないかを明確にするのは、データマネジメントを進めていくうえで大切です。もし、現状のデータの種類や状況を把握しないままデータマネジメントの取り組みを進めてしまうと、導入したツールや仕組みには適さない、または繋がらないという事態も起こり得ます。こうした不測の事態を避けるためにも、今のデータの状態を把握しておきましょう。

また、現状を整理する場合、データが自分の組織や部署だけでは足りない場合もあります。その際は、他部署と連携を図り、目的に対して必要な範囲は網羅した状態で整理を行いましょう。

関連:顧客データ収集の方法と有効なツール。収集すべき2種類の顧客データ

スモールスタートから始める

データマネジメントを全社的に一気に進めるのは、規模が大きすぎるため統率が困難になる場合が多いです。また、最悪の場合、時間ばかり取られてしまい、なかなか成果に繋がらずプロジェクトが途中で終わってしまうという可能性もあります。そのため、スモールスタートから始めることをおすすめしています。

目的に対して、まずは小さなデータから手をつけ、小さな成功例を積み重ねていくことが、結果的にプロジェクトの成功に繋がることでしょう。

PDCAサイクルが回せる環境を作る

データマネジメントは一度実施して終わりではありません。一度データマネジメントを運用すると、更なる課題や案が出てきます。そのため、改善を行えるようPDCAを回せる環境を作ることが重要です。PDCAサイクルに関しては「気づき」「分析」「対処」「継続による醸成」の4つの要素を組み込み、データ活用する成長サイクルを構築しましょう。

「気づき」とは、事実を捉え、見えていない事象や問題に気づくこと、それに対して「分析」を行うことで問題点を明確化し、「対処」でデータを活用することでどこまで意思決定の品質が向上するのか検討しつつ、意思決定プロセスを分解し、データによって自動化が可能な箇所の業務効率化を検討する必要があります。最後の、「継続による醸成」では、データ活用を継続し醸成させる仕組みが重要です。

データ活用は、最初のうちはなかなか上手くデータを揃えられないケースが多く、思うように進められない場面が多く出てきますが、サイクルを構築して回すことで、成熟度が上がり、企業の強みへと繋がります。

顧客データに関する活用プロジェクトの進め方については、下記の無料資料で詳しく紹介しています。

無料資料:顧客データ活用が進まない6つの原因と解決策のダウンロードはこちら

顧客データ活用が進まない6つの原因と解決策

データマネジメントの事例

データマネジメントに取り組んだ2つの企業の事例を紹介します。

  • コニカミノルタ
  • 大和ライフネクスト

コニカミノルタでのデータマネジメント

日本の電機メーカーであるコニカミノルタの事例を紹介します。

コニカミノルタは、世界約150カ国にセールス・サービス体制を整え、世界中に約200万社の顧客企業を抱えるグローバル企業のためデータの量は膨大で、管理と活用に苦労していました。

分析に必要なデータは、売上・粗利など財務データ、機器の稼働データ、販売会社のカスタマーエンジニアのサービス活動データなど多岐に渡り、かつ社内での格納場所も分散していました。そのため、担当者は分析のテーマに応じて必要なデータを各格納場所から取得・結合して分析をするという状態でした。

また、分析データの作成も、データ分析依頼のたびに一から作成をするために重複した作業が発生するなど、分析担当者に多くの工数と負担がかかるなど、担当者に属人的でかつ業務負担がとても大きいことが課題でした。さらに、作成されたレポートにはデータ定義や品質のバラつきがあり、信頼のおける分析結果とは言えない状況でした。

そのような状況を打破するため、データ分析依頼を受けてからレポート発行するまでの業務フローの整理から始め、データ分析をするために必要な運用ルールの整備などのデータマネジメントを行いました。結果、データ分析業務の属人化を解消し、レポート作成時間が大幅に短縮できたうえ、データ分析サービスの社内展開を進めることに成功しています。

また、データマネジメントグループは少人数体制であることもあり、データ分析に工数を割くためデータ管理のところは極力工数をかけないよう極力簡略化させる必要がありました。その点も考慮し、問合せから変更管理・評価までを一元管理することで運用の効率化を行い、管理工数を削減するとともにレポート品質が向上しました。

大和ライフネクストでのデータマネジメント

マンション管理やビル管理を行っている大和ライフネクストの事例を紹介します。

国内屈指の不動産管理実績を誇る大和ライフネクストでは「総合生活支援サービス企業」としてより豊かな「人、街、暮らし」を支援するサービスを提供しています。そのため蓄積データは膨大な量と種類があり、日々の業務に追われる中で適切なデータマネジメントが困難な状態でした。また、社内ではDX推進への取り組みが必須課題であったため、膨大な量のデータの有効活用が求められていました。

大和ライフネクストでは、セキュリティ・データ管理課は元々存在していましたが、社内の各部署の要望に応じてデータ提供をするだけに止まっており、活用までは至っていませんでした。加えて、各部署がクラウド化していく中で、それぞれのデータがクラウド上に格納されデータのサイロ化が起き、データ管理課内でもどのデータがどこにあるか把握できなくなっていました。

コンサルティングの力を借りながら現状の問題点を抽出・整理などのデータマネジメントアセスメントから始め、アセスメントの初期段階で、データ項目の意味定義といったメタデータのナレッジが属人化しているという問題点が抽出されました。

属人化の解消のためには、社内全体にデータ活用の文化を馴染ませる必要があり、また同時にデータの活用方法が理解できる人材の育成を行う必要がありました。データマネジメントというと、ツールやテクニカルな部分に注目しがちですが、ツールを使いこなせる土壌づくりも同時に重要という点に気づくことができました。

ナレッジの浸透させるための一歩として、大和ライフネクストではデータのインプットとアウトプットがどのように行われ、社内のどのシステムと紐付いているのか一目で理解できる「モデル図」を作成しました。社内メンバーもこのモデル図を見るだけで、データ活用支援ができるような環境作りに成功しています。

CDPを利用したデータマネジメント

データマネジメントを行うにあたり、システムやツールの選定は重要です。ここからはデータマネジメントの中でも重要なデータの管理の部分で有効的なシステムの1つであるCDPについて紹介します。

CDPとは

CDPとは「カスタマー データ プラットフォーム:Customer Data Platform」の略称で、顧客に関するデータを収集・統合・連携するシステムのことを指します。

CDPは顧客理解を目的としたプラットフォームであるため、データマネジメントの目的を、社内の業務効率よりも社内の売上向上や顧客とのコミュニケーション改善などに置いている企業でのデータマネジメントに有効です。

CDPについて、詳しくは下記の記事をご覧ください。

関連:CDPとは?カスタマーデータプラットフォームの機能やメリット、活用例を解説

CDPがもたらすメリット

データマネジメントにおいてCDPがもたらすメリットは、データのサイロ化を解消し、顧客を1人の個人として認識できるようデータを統合できる点です。

これにより、さまざまなチャネルから取得した顧客情報をもとに顧客一人ひとりの動きを分析することができ、顧客をより深く理解することができます。また、顧客理解から顧客に適切なタイミングで適切な情報を届けられるなどのコミュニケーション改善にも繋げることができます。

integralcore integration

さらに、CDPで統合・整理されたデータをもとにBIツールに連携したり、メールなどのコミュニケーションツールと連携することができるため、データマネジメントされたデータでマーケティング施策の改善を行うこともできます。

CDPとBIツールの連携により可能となる顧客分析の詳細は、下記の無料資料をご覧ください。

CDPによる顧客理解と分析

また、CDPの導入が増えている理由や他のツールとの違い、各部門でのユースケースなどについては、下記の無料資料で紹介しています。

無料資料:CDP検討マニュアルのダウンロードはこちら

CDP検討マニュアル

EVERRISEが提供するCDP「INTEGRAL-CORE」

顧客プロファイルを活用できれば、顧客の基本的な情報を把握するだけでなく、顧客自身も気づいていないインサイトの発見に繋げることも期待できます。

企業の中では、社内共通の顧客プロファイルが存在せず、顧客の情報が別々に管理されていることが多いのが実情です。

社内の顧客データを集約・管理できる環境を効率よく作るためにも、CDPの導入は1つの手段としておすすめです。

弊社EVERRISEでは、顧客データをノーコードで管理できるCDP「INTEGRAL-CORE」を提供しており、これまでTVerさまやキーコーヒーさま、hoyuさまなどを含め複数社の導入実績がございます。

  • CDP「INTEGRAL-CORE」の特長
    • 顧客に関するあらゆるデータを収集・統合
    • ノーコードでデータ集計やセグメント作成
    • 外部連携機能でBIツール・MA・CRMなどへデータを渡し、マーケティング施策へ活用可能
    • 自社開発システムならではの総合支援体制
    • 専用環境での提供も可能な国産CDP

CDP「INTEGRAL-CORE」の機能や特長、ユースケース、実際の画面については、以下の無料資料で詳しく紹介しています。データ活用にお困りの際はぜひお気軽にご相談ください!

無料資料:CDP「INTEGRAL-CORE」サービス資料のダウンロードはこちら

Related Post

関連記事